Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 20(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35877723

RESUMO

Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.


Assuntos
Organismos Aquáticos , Lectinas de Plantas , Animais , Peixes , Galectinas , Glicoproteínas , Lectinas Tipo C
2.
Theranostics ; 12(7): 3534-3552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547771

RESUMO

Rationale: Malignant ascites in peritoneal metastases is a lipid-enriched microenvironment and is frequently involved in the poor prognosis of epithelial ovarian cancer (EOC). However, the detailed mechanisms underlying ovarian cancer (OvCa) cells dictating their lipid metabolic activities in promoting tumor progression remain elusive. Methods: The omental conditioned medium (OCM) was established to imitate the omental or ascites microenvironment. Mass spectrometry, RT-qPCR, IHC, and western blot assays were applied to evaluate human fatty acid desaturases expressions and activities. Pharmaceutical inhibition and genetic ablation of SCD1/FADS2 were performed to observe the oncogenic capacities. RNA sequencing, lipid peroxidation, cellular iron, ROS, and Mito-Stress assays were applied to examine ferroptosis. OvCa patient-derived organoid and mouse model of peritoneal metastases were used to evaluate the combined effect of SCD1/FADS2 inhibitors with cisplatin. Results: We found that two critical fatty acid desaturases, stearoyl-CoA desaturase-1 (SCD1) and acyl-CoA 6-desaturase (FADS2), were aberrantly upregulated, accelerating lipid metabolic activities and tumor aggressiveness of ascites-derived OvCa cells. Lipidomic analysis revealed that the elevation of unsaturated fatty acids (UFAs) was positively associated with SCD1/FADS2 levels and the oncogenic capacities of OvCa cells. In contrast, pharmaceutical inhibition and genetic ablation of SCD1/FADS2 retarded tumor growth, cancer stem cell (CSC) formation and reduced platinum resistance. Inhibition of SCD1/FADS2 directly downregulated GPX4 and the GSH/GSSG ratio, causing disruption of the cellular/mitochondrial redox balance and subsequently, iron-mediated lipid peroxidation and mitochondrial dysfunction in ascites-derived OvCa cells. Conclusions: Combinational treatment with SCD1/FADS2 inhibitors and cisplatin synergistically repressed tumor cell dissemination, providing a promising chemotherapeutic strategy against EOC peritoneal metastases.


Assuntos
Ferroptose , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Ascite , Carcinoma Epitelial do Ovário , Cisplatino/farmacologia , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados , Feminino , Humanos , Ferro , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Microambiente Tumoral
4.
Clin Epigenetics ; 13(1): 142, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294135

RESUMO

BACKGROUND: In contrast to stable genetic events, epigenetic changes are highly plastic and play crucial roles in tumor evolution and development. Epithelial ovarian cancer (EOC) is a highly heterogeneous disease that is generally associated with poor prognosis and treatment failure. Profiling epigenome-wide DNA methylation status is therefore essential to better characterize the impact of epigenetic alterations on the heterogeneity of EOC. METHODS: An epigenome-wide association study was conducted to evaluate global DNA methylation in a retrospective cohort of 80 mixed subtypes of primary ovarian cancers and 30 patients with high-grade serous ovarian carcinoma (HGSOC). Three demethylating agents, azacytidine, decitabine, and thioguanine, were tested their anti-cancer and anti-chemoresistant effects on HGSOC cells. RESULTS: Global DNA hypermethylation was significantly associated with high-grade tumors, platinum resistance, and poor prognosis. We determined that 9313 differentially methylated probes (DMPs) were enriched in their relative gene regions of 4938 genes involved in small GTPases and were significantly correlated with the PI3K-AKT, MAPK, RAS, and WNT oncogenic pathways. On the other hand, global DNA hypermethylation was preferentially associated with recurrent HGSOC. A total of 2969 DMPs corresponding to 1471 genes were involved in olfactory transduction, and calcium and cAMP signaling. Co-treatment with demethylating agents showed significant growth retardation in ovarian cancer cells through differential inductions, such as cell apoptosis by azacytidine or G2/M cell cycle arrest by decitabine and thioguanine. Notably, azacytidine and decitabine, though not thioguanine, synergistically enhanced cisplatin-mediated cytotoxicity in HGSOC cells. CONCLUSIONS: This study demonstrates the significant association of global hypermethylation with poor prognosis and drug resistance in high-grade EOC and highlights the potential of demethylating agents in cancer treatment.


Assuntos
Resistência a Medicamentos/genética , Epigenoma/genética , Neoplasias Ovarianas/genética , Metilação de DNA/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/mortalidade , Estudos Retrospectivos
5.
Pharmacol Res ; 161: 105157, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32814169

RESUMO

Increasing evidence shows that Traditional Chinese Medicine (TCM) has an obvious appeal for cancer treatment, but there is still a lack of scientific investigation of its underlying molecular mechanisms. Bitter melon or bitter gourd (Momordica charantia) is an edible fruit that is commonly consumed, and it is used to cure different diseases in various ancient folk medical practices. We report that a bioactive protein, MAP30, isolated from bitter melon seeds exhibited potent anticancer and anti-chemoresistant effects on ovarian cancer cells. Functional studies revealed that MAP30 inhibited cancer cell migration, cell invasion, and cell proliferation in various ovarian cancer cells but not normal immortalized ovarian epithelial cells. When administered with cisplatin, MAP30 produced a synergistic effect on cisplatin-induced cell cytotoxicity in ovarian cancer cells. When low doses of cisplatin and MAP30 were co-injected intraperitoneally, a remarkable reduction of tumor dissemination and tumor growth was observed in an ovarian cancer ascites mouse model. Notably, blood tests confirmed that MAP30 did not cause any adverse effects on liver and kidney functions in the treated mice. MAP30 activated AMP-activated protein kinase (AMPK) signaling via CaMKKß and induced cell cycle arrest in the S-phase. MAP30 modulated cell metabolism of ovarian cancer cells via suppression of GLUT-1/-3-mediated glucose uptake, adipogenesis, and lipid droplet formation in tumor development and progression. MAP30 also induced an increase in intracellular Ca2+ ion concentration, which triggered ROS-mediated cancer cell death via apoptosis and ferroptosis. Collectively, these findings suggest that natural MAP30 is a non-toxic supplement that may enhance chemotherapeutic outcomes and benefit ovarian cancer patients with peritoneal metastases.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Metabolismo Energético/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Momordica charantia , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Glicólise/efeitos dos fármacos , Humanos , Lipogênese/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Momordica charantia/química , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Inativadoras de Ribossomos Tipo 2/isolamento & purificação , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Curr Protein Pept Sci ; 20(3): 231-239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29895241

RESUMO

The genus Panax consists of a group of prized medicinal herbs. Major members of the Panax genus include P. ginseng, P. notoginseng, P. quinquefolius, and P. vietnamensis. They possess various bioactive constituents such as ginsenosides, saponins, polysaccharides and proteins. Many of them were reported to show beneficial effects on human health. Ginsenosides and saponins of ginsengs caught the sight of most researchers. Precise investigations revealed their roles on improvement of the functioning of the nervous system, cardiovascular system, and other functions. In contrast, our knowledge of the bioactive Panax proteins is relatively limited. A number of proteins from P. ginseng, the most valuable member of Panax species, have been investigated and proved to be beneficial to our body. Meanwhile, a few bioactive P. notoginseng proteins, such as ribonucleases and antifungal proteins, have been characterized and reported. We summarize herein the proteins present in P. notoginseng that have been identified, and try to compare them with those from other Panax species with a similar structure or bioactivity, and conclude whether the proteins in P. notoginseng have any distinctive features.


Assuntos
Panax notoginseng/química , Proteínas de Plantas , Raízes de Plantas/química , Animais , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia
7.
Curr Med Chem ; 25(40): 5613-5630, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28730971

RESUMO

The purpose of this account is to review the compounds capable of eliciting mitochondria-mediated apoptosis in cancer cells produced by medicinal fungi and plants. The medicinal fungi discussed encompass Cordyceps, Ganoderma species, Coriolus versicolor and Hypsizygus marmoreus. The medicinal plants discussed comprise Astragalus complanatus, Dendrobium spp, Dioscorea spp, Glycyrrhiza spp, Panax notoginseng, Panax ginseng, and Momordica charantia. These compounds have the potential of development into anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Fungos/química , Neoplasias/tratamento farmacológico , Plantas Medicinais/química , Antineoplásicos/síntese química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Fungos/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Plantas Medicinais/metabolismo
8.
Appl Microbiol Biotechnol ; 100(15): 6601-6617, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27338574

RESUMO

Fungi comprise organisms like molds, yeasts and mushrooms. They have been used as food or medicine for a long time. A large number of fungal proteins or peptides with diverse biological activities are considered as antibacterial, antifungal, antiviral and anticancer agents. They encompass proteases, ribosome inactivating proteins, defensins, hemolysins, lectins, laccases, ribonucleases, immunomodulatory proteins, and polysaccharopeptides. The target of the present review is to update the status of the various bioactivities of these fungal proteins and peptides and discuss their therapeutic potential.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Fungos/metabolismo , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Proliferação de Células/efeitos dos fármacos , Defensinas/farmacologia , Fatores Imunológicos/farmacologia , Proteínas Inativadoras de Ribossomos/farmacologia
9.
Appl Microbiol Biotechnol ; 100(14): 6165-6181, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27245678

RESUMO

Snake venoms are complex mixtures of small molecules and peptides/proteins, and most of them display certain kinds of bioactivities. They include neurotoxic, cytotoxic, cardiotoxic, myotoxic, and many different enzymatic activities. Snake envenomation is a significant health issue as millions of snakebites are reported annually. A large number of people are injured and die due to snake venom poisoning. However, several fatal snake venom toxins have found potential uses as diagnostic tools, therapeutic agent, or drug leads. In this review, different non-enzymatically active snake venom toxins which have potential therapeutic properties such as antitumor, antimicrobial, anticoagulating, and analgesic activities will be discussed.


Assuntos
Venenos de Serpentes/química , Venenos de Serpentes/farmacologia , Analgésicos/análise , Analgésicos/farmacologia , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Anticoagulantes/análise , Anticoagulantes/farmacologia , Antineoplásicos/análise , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Peptídeos/análise , Conformação Proteica , Proteínas/análise , Serpentes
10.
Biochim Biophys Acta ; 1863(9): 2201-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27235832

RESUMO

Incidence of colorectal cancer is closely related with the lifestyle, especially the dietary habits of patients. Epidemiological researches have demonstrated a negative correlation between legume consumption and colorectal cancer incidence. Lectins/hemagglutinins are a type of carbohydrate binding proteins which are abundantly stored in legumes. Their eminent pH-stability allows them to survive digestion and remain active in the intestine where they may have direct contact with colorectal tumors. It is therefore interesting to explore the direct interaction between lectins/hemagglutinins and colorectal cancer. In the present research, we reported a detailed research on the interaction between a hemagglutinin isolated from an edible legume with two colorectal cancer cell lines. This hemagglutinin (NCBBH) was found to first bind to tumor cell membrane as early as 30min post treatment and was gradually transported inside the cytoplasm within 3h, with some of it localized in the Golgi apparatus and some in the lysosomes. After its entrance, the hemagglutinin induced aggregation of the Golgi apparatus, which in turn adversely affected the transportation of protein from endoplasmic reticulum (ER) to the Golgi apparatus, resulting in protein accumulation in ER and ER stress. The hemagglutinin-treated cells also manifested severe mitochondrial malformation and membrane depolarization, accompanied by obvious apoptosis characteristics, like chromatin condensation, phosphatidylserine exposure and caspase activation. Collectively, our results indicate that the hemaggltuinin could successfully enter the cytoplasm of colorectal cancer cells and adversely affect their growth, providing a mechanism in support of the application of edible legumes to the prevention and treatment of colorectal cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Fabaceae/química , Hemaglutininas/farmacologia , Mitocôndrias/patologia , Comunicação Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/ultraestrutura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura
11.
Int J Biol Macromol ; 85: 335-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769089

RESUMO

A 60-kDa glucosamine binding lectin, white kidney bean lectin (WKBL), was purified from Phaseolus vulgaris cv. white kidney beans, by application of anion exchange chromatography on Q-Sepharose, affinity chromatography on Affi-gel blue gel, and FPLC-size exclusion on Superdex 75. The anti-proliferative activity of WKBL on HONE1 cells and HepG2 cells was stronger than the activity on MCF7 cells and WRL68 cells (IC50 values for a 48-h treatment with WKBL on HONE1 cells: 18.8 µM; HepG2 cells: 19.7 µM; MCF7 cells: 26.9 µM; and WRL68 cells: >80 µM). The activity could be reduced by addition of glucosamine, which occupies the binding sites of WKBL, indicating that carbohydrate binding is crucial for the activity. Annexin V-FITC and PI staining, JC-1 staining and Hoechst 33342 staining revealed that apoptosis was induced on WKBL-treated HONE1 cells and HepG2 cells, but not as obviously on MCF7 cells. Cell cycle analysis also showed a slight cell cycle arrest on HONE1 cells after WKBL treatment. Western blotting suggested that WKBL induced apoptosis of HONE1 cells occurred through the extrinsic apoptosis pathway, with detection of increased level of active caspase 3, 8 and 9.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Phaseolus/química , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Glucosamina/química , Humanos , Concentração de Íons de Hidrogênio , Fito-Hemaglutininas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
12.
Appl Microbiol Biotechnol ; 100(4): 1597-1610, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26685676

RESUMO

Shiga toxins are a group of type 2 ribosome-inactivating proteins (RIPs) produced in several types of bacteria. The toxins possess an AB5 structure, which comprises a catalytic A chain with N-glycosidase activity, and five identical B chains and recognize and bind to the target cells with specific carbohydrate moieties. In humans, the major molecular target which recognizes the Shiga toxins is the Gb3 receptor, which is mainly expressed on the cell surface of endothelial cells of the intestine, kidney, and the brain. This causes these organs to be susceptible to the toxicity of Shiga toxins. When a person is infected by Shiga toxin-producing bacteria, the toxin is produced in the gut, translocated to the circulatory system, and carried to the target cells. Toxicity of the toxin causes inflammatory responses and severe cell damages in the intestine, kidneys, and brain, bringing about the hemolytic uremic syndrome (HUS), which can be fatal. The Shiga toxin requires a couple of steps to exert its toxicity to the target cells. After binding with the target cell surface receptor, the toxin requires a complicated process to be transported into the cytosol of the cell before it can approach the ribosomes. The mechanisms for the interactions of the toxin with the cells are described in this review. The consequences of the toxin on the cells are also discussed. It gives an overview of the steps for the toxin to be produced and transported, expression of catalytic activity, and the effects of the toxin on the target cells, as well as effects on the human body.


Assuntos
Globosídeos/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , Inibidores da Síntese de Proteínas/toxicidade , Toxinas Shiga/metabolismo , Toxinas Shiga/toxicidade , Triexosilceramidas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Endoteliais/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Rim/efeitos dos fármacos , Rim/patologia , Inibidores da Síntese de Proteínas/química , Transporte Proteico , Ribossomos/efeitos dos fármacos , Toxinas Shiga/química
13.
Chin Med ; 10: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357525

RESUMO

BACKGROUND: The green speckled lentil seed (Lens culinaris) lectin (GSLL) exhibits hemagglutinating activity, and possesses some properties distinct from those of other lentil lectins (e.g., molecular size, biological activities) that deserve further investigation. This study aims to investigate the basic properties (e.g., molecular size, amino acid sequence, sugar specificity) and biological activities (e.g., antiproliferative activity) of GSLL. METHODS: GSLL was purified by successive fractionation on SP-Sepharose, Affi-gel blue gel, Mono Q, and Superdex 75. The biochemical properties of GSLL were investigated by SDS-PAGE, mass spectrometry, N-terminal amino acid sequencing, and sugar inhibition tests. For the biological activities, purified lyophilized GSLL was sterilized, adjusted to concentrations from 1 to 0 mg/mL (by twofold serial dilution) in Dulbecco's modified Eagle's medium with fetal bovine serum, and examined by using the MTT assay, flow cytometry, and western blotting after treatment of nasopharyngeal carcinoma CNE1 and CNE2 cell lines with the lectin. RESULTS: GSLL appeared as a 21-kDa band in non-reducing SDS-PAGE. It was composed of two subunits with molecular sizes of 17 and ~4 kDa. It exhibited specificity in binding to glucose and mannose, as well as glucosides and mannosides. Mass spectrometry and N-terminal amino acid sequencing revealed similarity of GSLL to L. culinaris lectin (LcL), especially higher coverage of the ß-chain of LcL. A 48-h treatment with GSLL exerted antiproliferative effects on nasopharyngeal carcinoma CNE1 and CNE2 cell lines with significant inhibition at 0.125 mg/mL (P < 0.001) and 1 mg/mL (P = 0.004), respectively, and these effects were attenuated in the presence of glucose and mannose. GSLL induced apoptosis in nasopharyngeal carcinoma CNE1 cells, with detectable phosphatidylserine externalization, mitochondrial depolarization, and cell cycle arrest. Western blot analysis suggested that GSLL triggered the extrinsic apoptotic pathway involving caspase 3, 8, and 9 in CNE1 cells. CONCLUSION: GSLL possessed some different properties from LcL (e.g., lower pI), and increased caspase 3, 8, and 9 activity in CNE1 cells.

14.
Artigo em Inglês | MEDLINE | ID: mdl-26290674

RESUMO

A lectin exhibiting antiproliferative activity on tumor cell lines but devoid of antifungal activity has been purified from Phaseolus vulgaris cv. Green Dragon no. 8 seeds. The lectin was a 60 kDa dimeric protein with two 30 kDa subunits. It was a glucosamine-specific lectin as implied from the inhibitory effect of glucosamine on hemagglutinating activity of the lectin. The steps for isolation of the lectin involved Affi-gel blue gel (affinity gel), Mono Q (anion exchanger), and Superdex 75 column (size exclusion). The lectin was purified 20.8-fold from the crude extract of the beans. The purified lectin showed antiproliferative activity on breast cancer MCF7 cell line and nasopharyngeal cancer HONE1 and CNE2 cell lines, but a low activity on normal skin fibroblast HSF98 cell line. The lectin was shown to induce apoptosis on HONE1 cells, as indicated by increased phosphatidylserine externalization and mitochondrial depolarization. It also blocked HONE1 cell division and kept the cells at the G2/M phase of the cell cycle.

15.
Appl Biochem Biotechnol ; 177(6): 1374-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26304129

RESUMO

Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.


Assuntos
Mitógenos , Pisum sativum/química , Lectinas de Plantas , Inibidores da Transcriptase Reversa , Animais , Proliferação de Células/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Camundongos , Mitógenos/química , Mitógenos/isolamento & purificação , Mitógenos/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Lectinas de Plantas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/isolamento & purificação , Inibidores da Transcriptase Reversa/farmacologia , Baço/metabolismo
16.
Appl Microbiol Biotechnol ; 99(9): 3755-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25794876

RESUMO

Marine organisms have been extensively explored for the last several decades as potential sources of novel biologically active compounds, and extensive research has been conducted on lectins. Lectins derived from marine organisms are structurally diverse and also differ from those identified from terrestrial organisms. Marine lectins appear to be particularly useful in some biological applications. They seem to induce negligible immunogenicity because they have a relatively small size, are more stable due to extensive disulfide bridge formation, and have high specificity for complex glyco-conjugates and carbohydrates instead of simple sugars. It is clear that many of them have not yet been extensively studied when compared with their terrestrial counterparts. Marine lectins can be used to design and develop new potentially useful therapeutic agents. This review encompasses recent research on the isolation and identification of marine lectins with potential value in medicinal applications.


Assuntos
Organismos Aquáticos/química , Lectinas/isolamento & purificação , Lectinas/uso terapêutico , Animais , Humanos
17.
Molecules ; 20(1): 648-68, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25569520

RESUMO

Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.


Assuntos
Fármacos Anti-HIV/farmacologia , Lectinas/farmacologia , Animais , Cianobactérias/química , Flores/química , Helmintos/química , Humanos , Lectinas de Plantas/farmacologia
18.
Appl Biochem Biotechnol ; 175(1): 75-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25240852

RESUMO

Bauhinia variegata var. variegata seeds are rich in proteins. Previously, one of the major storage proteins of the seeds was found to be a trypsin inhibitor that possessed various biological activities. By using another purification protocol, a glucoside- and galactoside-binding lectin that demonstrated some differences from the previously reported B. variegata lectin could be isolated from the seeds. It involved affinity chromatography on Affi-gel blue gel, ion exchange chromatography on Q-Sepharose and Mono Q, and also size exclusion chromatography on Superdex 75. The lectin was not retained on Affi-gel blue gel but interacted with Q-Sepharose. The lectin was a 64-kDa protein with two 32-kDa subunits. It had low thermostability (stable up to 50 °C) and moderate pH stability (stable in pH 3-10). It exhibited anti-proliferative activity on nasopharyngeal carcinoma HONE1 cells with an IC50 of 12.8 µM after treatment for 48 h. It also slightly inhibited the growth of hepatoma HepG2 cells. The lectin may have potential in aiding cancer treatments.


Assuntos
Bauhinia/química , Proliferação de Células/efeitos dos fármacos , Lectinas/química , Células Hep G2 , Humanos , Lectinas/isolamento & purificação , Lectinas/farmacologia , Estabilidade Proteica , Sementes/química
19.
Biochem Pharmacol ; 89(3): 329-39, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24637239

RESUMO

All primary nasopharyngeal carcinoma (NPC) tumors contain hypoxic regions which are implicated in decreased local control and increased distant metastases, as well as resistance to chemotherapy in advanced NPC patients. One of the promising therapeutic approaches for NPC is to use drugs that can target hypoxic factors in tumors. In the present investigation, the type I ribosome inactivating protein α-momorcharin (α-MMC), isolated from seeds of the bitter gourd Momordica charantia, reduced cell viability and inhibited clonogenic formation of human NPC CNE2 and HONE1 cells under normoxia and cobalt chloride-induced hypoxia. By comparison, α-MMC exhibited only slight cytotoxicity on human nasopharyngeal epithelial NP69 cells under normoxia. Interestingly, α-MMC suppressed the expression levels of hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) in hypoxic NPC, as well as the growth of human umbilical vein endothelial cells. Further study disclosed that α-MMC targeted endoplasmic reticulum and down-regulated unfolded protein response (UPR) in NPC cells. Moreover, α-MMC induced apoptosis in NPC cells in a dose- and time-dependent manner. It initiated mitochondrial- and death receptor-mediated apoptotic signaling in CNE2 cells, but there was hardly any effect on HONE1 cells. In addition, α-MMC brought about G0/G1 phase cell cycle arrest in CNE2 cells and S phase arrest in HONE1 cells. Collectively, α-MMC preferentially exhibited inhibitory effect on normoxic and hypoxic NPC cells partly by blocking survival signaling (e.g. HIF1α, VEGF and UPR), and triggering apoptotic pathways mediated by mitochondria or death receptor. These observations indicate the potential utility of α-MMC for prophylaxis and therapy of NPC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Oxigênio/farmacologia , Proteínas Inativadoras de Ribossomos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Carcinoma Nasofaríngeo , Oxigênio/química , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Appl Microbiol Biotechnol ; 98(8): 3475-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562325

RESUMO

Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper ß-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.


Assuntos
Antifúngicos/isolamento & purificação , Antivirais/isolamento & purificação , Organismos Aquáticos/química , Produtos Biológicos/isolamento & purificação , Antifúngicos/farmacologia , Antivirais/farmacologia , Produtos Biológicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...